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SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION 

JAMES H. BRAMBLE AND JINCHAO XU 

ABSTRACT. This paper is devoted to the error estimates for some weighted 
L2 projections. Nearly optimal estimates are obtained. These estimates can 
be applied to the analysis of the usual multigrid method, multilevel precondi- 
tioner and domain decomposition method for solving elliptic boundary prob- 
lems whose coefficients have large jump discontinuities. 

1. INTRODUCTION 

This work was motivated by the study of the numerical solution of elliptic 
boundary value problems that have large discontinuity jumps in coefficients. If 
these jumps become larger, the corresponding discretized (by finite elements, 
for example) equation may be harder to solve. In some special cases, how- 
ever, multigrid or domain decomposition methods can be properly designed so 
that the numerically observed convergence rate is actually independent of these 
jumps. We find that the theoretical justification of this phenomenon lies in cer- 
tain approximation and stability properties of some weighted L2 projections 
with weights provided by the discontinuous coefficients (cf. [10, 11, 4]). The 
point is that we want to get estimates which are uniform with respect to the 
weights. 

2 A careful study of this type of weighted L projection will be made in this 
paper. We shall establish estimates that are nearly optimal under some special 
circumstances. In a sequel of this paper, we shall present some negative results 
to demonstrate that the expected estimates are not always possible, in general, 
and the results in the paper are sharp in a certain sense. 

Related to the topic of this paper is the usual L2 projection. Some error 
and stability estimates for such a projection are also presented with complete 
proofs. 

As is done in [10], we will use the following notation: 
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Received May 18, 1990. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65M60, 65N15, 65N30. 

Key words and phrases. Finite element space, weighted L2 projections, multigrid, domain 
decomposition. 

This work was supported in part under the National Science Foundation Grant Nos. DMS84- 
05352 and 8801346-02, also by the U.S. Army Research Office through the Mathematical Sciences 
Institute, Cornell University. 

? 1991 American Mathematical Society 
0025-5718/91 $1.00 + $.25 per page 

463 



464 J. H. BRAMBLE AND JINCHAO XU 

which means that 

x<Cy, f>cg, and cv<u<Cv, 

where C and c are positive constants independent of the variables appearing 
in the inequalities and any other parameters related to meshes, spaces, etc. 

The remainder of the paper is organized as follows. In ?2, some preliminary 
material, such as the Sobolev spaces, finite element spaces, etc., will be pre- 
sented. Section 3 is devoted to the analysis of the usual L2 projection. The 
main estimates for weighted L2 projections will be presented in ?4. 

2. PRELIMINARIES 

Let Q c Rd (1 < d < 3) be a bounded domain. For simplicity, we assume 
that Q is an interval for d = 1, a polygon for d = 2, and a polyhedron for 
d = 3. On Q2, L'(Q) denotes the usual Banach space consisting of p th power 
integrable functions. The Sobolev space of index (m, p) is defined by 

W 'P(Q) e {v E LP(Q):D VE Lp(Q) if Ja ? m}, 

with a norm 
/ 1 /p 

IV II wmP(Q) def IIDaV ILP() 
ilal<m 

where a = (a1,..., ad) is a multi-integer and 

Da= - JaiI 
1aa, ad =1i 

For p = 2, by convention, we denote 

Hm (fdef Wm,2 (2) 

We will have occasion to use the following seminorms: 
/ ~ ~~~~ 1/p 

def(2 ( E IIDavllp I 
kal=m 

For m = 1, Ho (Q2) denotes the subspace of H1 (Q2) consisting of functions that 
vanish on an in an appropriate sense. Similarly, for a measurable J7O c O9 , 
Hr (Q) is the space consisting of functions in H1 that vanish on 17g. 

We quote the following well-known Sobolev continuous imbeddings [1]: 

L L??(Q), if d = 1, 

(2.1) H (92) ' LP(K) (1 < p < oo), if d = 2, 

(L(Q4), if d =3. 
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Lemma 2.1. We have 

IIUIIL2(o-) C E IIUIIL2(Q) + EIIU|IIH() VU E H (Q), E E (0, 1). 

For a proof, we refer to [10]. 
The following result is a special case of Theorem 2.1 in [10]. (Cf. also [9].) 

Lemma 2.2. Assume D is a bounded domain in R2 with AD Lipschitz contin- 
uous. Then 

IIWIIL??(D) C <OE |||HI(D) + E811WIIWoo(D)VWE ()EE(0 . 

Next we introduce the finite element space. For 0 < h < 1, let 8; be a 
triangulation of Q with simplices K of diameter less than or equal to h. We 
assume the family {87} is quasiuniform, i.e., there are constants co > 0 and 
cl > 0 such that 

h ~maxKE3- 
max hK <c, COhKE < c1 Vh, 
KEY hPK minKEgh 

where hK is the diameter of K and PK is the diameter of the largest ball 
contained in K. Corresponding to each triangulation ) we define a finite el- 
ement subspace Sh C HO (Q2) that consists of continuous piecewise (with respect 
to the elements in 87 ) linear polynomials vanishing on ail. 

For a given triangulation YT we consider a finer quasiuniform mesh 8h with 
h < h which is obtained by refining 'T in such a way that 

Sh CSh 

where Sh c H' (Q2) is the corresponding finite element space defined on 8h. 
It is well known that, for any function v E Sh 

(2.2) IIVIIL 2(Q) h E ) 
XXh 

where Ah is the set of vertices of the triangulation 8;, and 

(2.3) I|VIILo(Q) ~ hdIIIIvIILP(V) (1 < p < xc). 

The right-hand side of (2.2) is often called the discrete L2 norm. Inequality 
(2.3) is the well-known inverse property of the finite element spaces (cf. [5]). 

Lemma 2.3. For all v E Sh (), 

11IvIIH'(Q)X if d = 1, 

(2.4) IIVILoo(i) ' j Iloghl 1/2IvItH1(), if d=2, 

h- 1/21IvI1H1(U), if d = 3. 
Proof. The first inequality (for d = 1) follows from the usual Sobolev imbed- 
ding (in (2.1)). The second is well known in the literature (cf. [3]) and can be 
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easily obtained by using Lemma 2.2 together with the inverse inequality (2.3) 
with e = h. 

The proof of the last case for d = 3 is also almost trivial and can be furnished 
by using the inverse inequality (2.3) and Sobolev imbedding (2.1): 

IV IIL (Q) 11 h12 IVIIL6 () - h11v IIH1(Q). 0 

The most interesting part in Lemma 2.3 is perhaps for d = 2. That is just 
the limiting case in which the Sobolev imbedding fails. The following is another 
such example. 

Lemma 2.4. Assume Q is a polyhedral domain in R3. Then 

IIVIIL 2 (r) I IoghI112IIvIIH1(n) VV E Sh (Q) 

where T is any edge of Q. 
Proof. By breaking the domain Q into (possibly overlapping) subdomains that 
have parallel faces in one direction, we may assume here, without loss of gen- 
erality, that Q = (0, 1)3 is the unit cube. Applying the inequality in Lemma 
2.2 with the domain D = (0, 1)2 and w = v(xl, x2, X3), we get 

2 2<1 (2 - ~2 \ dxd 
IV(O,0,X3)1 -<IlogelJv + Ox- dxl dx2 

2 2 +e 11V11IW1(Q) VeE(O, 1). 

Integrating with respect to x3, we get 

J IV(O,O, 3)12 d3 I logel 11w11H (Q) + 21VII O(Q eE O ) 

Taking E = h312 and applying the inverse inequality yields 

IIVIIL 2 (r) I IoghI112IIvIIH1(n) VV E Sh (Q) 

where r7= {(O, O, X3): 0 < X3 <1}. 
Similar arguments obviously apply to the other edges of Q, and the proof is 

complete. o 

3. ORDINARY L PROJECTIONS 

r2 In this section, we shall consider the usual L projection with respect to the 

ordinary L2 inner product (namely without weights). 

Associated with the finite element space Sh , the L2 projection Qh: L2 (Q) 
Sh is defined by 

2 
(QhU, V) = (U, V) VU E L (),V E Sh. 

The aim of this section is to establish some estimates for Qh on H1 in both 

the L2 and H' norms, namely for all u E Ho (Q) 

(3.1) llU - QhUIIL2(a) 
- 

hIuIHi(Q) 
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and 

(3.2) IQUH()'IUIHI(Q 

The above estimates are closely related to the so-called simultaneous approxi- 
mation property: 

(3.3) xinsf (Iu- XI2(a) + hllu- l()' hlIIH(i VU E Hol (n). 
XESh 

More specifically, we have 

Lemma 3.1. (3.1) and (3.2) both hold if and only if (3.3) is true. 

The proof, which uses the triangle inequality and also the inverse property, 
is straightforward. 

Inequality (3.3) has been assumed in some papers on finite elements, but it 
seems that little attention is paid to its proof. The stability of the L2 projection 
in the H1 norm was perhaps first established by Bank and Dupont in [2]. Their 
proof, however, requires the full elliptic regularity condition (which is unnec- 
essary). A discussion of this problem in two dimensions may also be found in 
Crouzeix and Thomee [6]. Recently, Scott and Zhang [8] have constructed a 
kind of interpolation operator for nonsmooth functions that can also be used to 
give a proof of this result. As we pointed out earlier, it can be directly obtained 
by assuming the simultaneous approximation property (3.3), which is actually 
the approach that Mandel, McCormick, and Bank take in [7]. For avoiding 
a logical circle, the question remains as to how the simultaneous approxima- 
tion property is justified. Our approach here is to establish the stability by a 
different argument and obtain the simultaneous approximation property as a 
consequence. 

L2 error estimates. As we have assumed that d < 3, the Sobolev imbedding 
H 2(2) - C(Q) holds. Therefore, the usual nodal value interpolant Ih: C(Q) 

2 
Sh is well defined in H . It is well known that (cf. [5]) 

(3.4) IIU - QhUIIL2(a) < IIU -IhUIIL2(a) C h2IUIH2(y) VU E H2(Q) n Ho (Q). 

On the other hand, 

(3.5) IIU-QhuIIL2(a) ? jj2(u ) VU E L (Q). 

An application of the standard interpolation technique to the above two esti- 
mates yields 

Theorem 3.2. For u E Ho (Q), 

(3.6) IIU - QhUIIL2(a) 
< hlUjHi(Q) 

H stability. The main ingredient in our analysis is a local L2 projection 

Q,: L2(T) - ( 4 T(), for any given T E 3h, defined by 

(QTU, )L2(T) = (U, I)L2(T) Vu E L2 (Tr) E Y, (T). 
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Let T be the standard reference element, so that for any Tr E g we have an 
affine diffeomorphism FT: Ti -r T. For any function v E L 2(T), we adopt the 
following standard notation: 

v (*') = v (F (x)), x E T'. 

If QT is defined similarly, it is then straightforward to verify that 

(3.7) QTU=QU. 

These locally defined operators have the desired stability and approximation 
properties, as shown by 

Lemma 3.3. For any C E 8z, 

(3.8) I QTUIHI(T) < I UIHI (T) VU E H' (-r), 

and 

(3.9) IIu - QTUIIL2(T) h IUIH() VU E H' (). 
Proof. It follows from (3.7) that (3.8) is equivalent to 

(3.10) IQfUIH1(T) UIIH1(f) V"U E H (T). 

As all the norms on Y, (i) are equivalent, we have 

IQT H'(fl IlQT'IIL(T ll||U|L2T ll|IIIHI(t) ) 

which, since QtC = C' for any c' E R2, implies that 

tQAHI H1 C E inf 11K' + CIIH1(i) 
< IUIH1(T) 

This proves (3.10) and hence (3.8). 
Now we turn to the proof of (3.9). By changing variables and using (3.7), we 

get 

IIU - QTUIIL2(T) C 
- 

| U 2(T) 

h /2 inf II|| + clII dh2/ " U 

< h"d2h i-d/2 IH(T) U hIUIHI(T. 

This completes the proof. O 

We are now in a position to state and prove our stability theorem. 

Theorem 3.4. For all u E Ho (a), 

(3.11) IQhuIH-(Q) - IUIH1() 
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Proof. It follows from the inverse inequality, Lemma 3.2, and Lemma 3.3, that 

IQhuHIf(=T) 2 {lQhu - QTulHI() + IQTulH1(t)} 

< Z{h2 IQhU-QtuIL2(t)+IUI2T(t} 

Z {h-2 Q1l2 + IU12} + h 2 
lQhU - 

QTUIL'(TIIu)-HQIIIT2(I 

TEg 

The desired result then follows. 0 

Remark 3.1. Notice that our proof of (3.11), which uses Q, is carried out 
element-by-element. Such a "local" argument is crucial for us to establish the 
corresponding stability for the weighted L2 projection (with trivial modifica- 
tion). 

Simultaneous approximation properties. From the estimates we derived for Qh' 

property (3.3) then becomes clear by Lemma 3.1. In fact, this simultaneous 
approximation property holds for more general boundary conditions. For ex- 
ample, if o c 9Q2 is measurable, then we have 

Proposition 3.5. For any u E Hr (Q), there exists vh E Sh n Hr (Q) such that 
(3.3) holds. 

4. WEIGHTED L PROJECTION 

This section, which is the core of the paper, is devoted to the analysis of the 
weighted L2 projections. Both the L2 error estimates and H' stability will be 
investigated. 

Assume the domain Q admits the following decomposition: 
J 

(4.1) Q UQi 
i=1 

where the LI are mutually disjoint. Let F denote the set of interfaces, i.e., 
r = U= ali\d92\. For simplicity, we assume that r consists only of segments 
(d = 2) or plane polygons (d = 3). In other words, no part of any Ali is 
curved. 

Given a set of positive constants c , we introduce the following weight- 
ed inner products: 

J 

(4.2) (u, V)L2 (Q) = E i(U I V)L2(i)' 
i=l 

and 

(4.3) (u, V)Hi (Q) = E ( jVU * VV dx, 
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with the induced norms denoted by 11 IIL2 (,) and I * IHI(Q), respectively. More- 

over, we define a full weighted H1 norm by 

11 IIH() = (a IIL2(Q) + IH,' 
We assume that Q2 is triangulated by a family of quasiuniform meshes 

{.gh, h < 1}, as described earlier. An additional assumption we make here 
is that these triangulations will be lined up with the subdomains Q 's. Namely, 
the restriction of each 9 on each Q is also a triangulation of Qi itself. 

The weighted L projection Qh: L2 p) -_ Sh is defined by 

(4.4) (Qh UI V)L2(a) = (U, V)L2(Q) VU E L (Q), v E Sh. 

We will derive error estimates for Qh' of the following type: 

j(I - Qh )uIL2( ) < Chllogh| jujHi(a) VU e HI() 
for some positive constant y . The point here is that we require that the constant 
C appearing in the above estimate does not depend on the weights {coi} . Again, 
we will use the notation " in place of "< C ", where C is in particular 
independent of the weights. 

The derivation of such an estimate is not as simple as it might appear. For 
example, the argument used in the proof of Theorem 3.2 cannot be applied 
easily here, even though we can get the estimates analogous to (3.4) and (3.5) 
with proper weights. It is unclear if the interpolation between weighted H2 and 
L2 spaces would give rise to the right space. Nevertheless, the proof for d = 1 
is almost trivial. To be more precise, we have the following 

Proposition 4.1. For d = 1, we have for all u E Ho (a) 

1(1 - Qh )UIIL2 (a) C h cIUl(Q 
and 

I Q'ho I H,'(Q) I I IHwl (Q) 

Proof. Since d = 1, we have H' (Q) -+ C(Q2). Hence the nodal value inter- 

polant Ih: C(Q) Sh is well defined in H. It is well known that (cf. [5]), for 
any zT E5', 

22 r h21U2 1(, UEH -) Ilu - IhUIIL2(T) C hIuIH1( ) VU E H1(f) 
Summing up over all T e 8; with proper weights, we then get 

II | - Ih)UIIL2 (a) < Ch I U I H, (a) VU E Ho (Q)E 

Our first inequality then follows, since U(I-Qh)uIIL2 (a) < I2(I-I )uIIL2(Q). The 
proof of the second inequality is similar to Theorem 3.4 by Lemma 3.3. o 

The above approach cannot, in general, be extended to higher dimensions 

because of the lack of the imbedding H1 (Q) L-+ C(Q), although a similar tech- 

nique can be applied, as is done in ?4.2.1 below in some special circumstances 
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when d = 2. The analysis for more general cases, especially for d = 3, is more 
complicated, and special techniques are needed. 

4.1. The case of no internal cross point. By internal cross points we mean those 
points on F that belong to more than two LI's. If there is no such point on 
the interface, the analysis becomes very simple, and optimal estimates can be 
derived. 

We shall first present a lemma that shows that the estimate we need can be 
reduced to the estimates on interfaces. To do this, let us introduce a weighted 
inner product on L2 (): 

JA (U, V)L 2() = 0f wuv dx. 

Denoting Sh(T) def {vIr: v E Sh}, let P.: L2(J7) ,4 Sh(T) be the orthogonal 
projection with respect to (, *)L2 (r). 

Lemma 4.2. For all u E Ho (Q), 

11(i- Qh)UIIL2(a) ' (Q) + h1 u |-hPFUIIL 2 (r) 

Proof. On each domain Qi, by Proposition 3.5, there exists a w1 E Sh(Qi) 
such that 

(4.5) IIu-WiIL2( ) + h IIU-WIIH1( ) 
_ WI2IH(h 

2 
H )2 

Let w E Sh be such that 

{ Wi, at the nodes in Q 

Pru, on F. 

Therefore, using (2.2), 

IIt 2 - W2IIL2() < E - WEIIL2(Q) + ZO I(W - Pru)(p)I2 
i=l 1=1 pEre 

Zhl coIHI(Q)+ - WII2( + hIIw -PrUI2 I2 (r) 

The desired result then follows, since 

IIU- QhuIIL2(Q) ? l|U WIIL2(L). 

From the above proof, we see that the validity of Lemma 4.2 has nothing 
to do with cross points. Nevertheless, we only know its application to the case 
that the interface has no internal cross points. 



472 J. H. BRAMBLE AND JINCHAO XU 

Theorem 4.3. Assume the decomposition (4.1) has no internal cross points. 
Then, for all u E Ho (Q), 

(4.6) 2((-aQ )IL2(I) 1 uIH 

and 

(4 

7) 
~~~~~IQh UIH'(Q) <IUIH, (Q)- 

Proof. Define a function 0 E Sh(17) by 0 = Pr u, on each Fi, where Pr is 

the orthogonal L2 projection from L2(1i) to the restriction of Sh to 1i . By 
the hypothesis that r has no cross point, q is well defined. Note that on each 
IF, we have 

IIU - 01/L2(rF) < //U - WiIL2(r) 

By Lemma 2.1, 

JI)i//L2(r ) L h u i-W,//L2(a ) + h//u- ( 

Hence, 

h IIU-wIIl.L2(rF) C /U-i |IL2(Q ) + h /| - ||HI (Q) 

h2 2 

Consequently, 
J 

h//u Pru/|L2(f() Cs h EOi I/u - k//L2(rE) 
i=l 

J 
h2 E i|U,(Q) = h l 

Applying Lemma 4.2 gives (4.6). 
The proof of (4.7) is identical to that of (3.1 1). This completes the proof. 01 

4.2. General case. When the interface has some internal cross points, the prob- 
lem becomes somewhat more subtle. We will derive certain estimates under 
some special circumstances. 

4.2.1. Estimates for 'finer"fJnite element functions. For d = 2, the embedding 
H1 (Q) L-* C(Q) is not true in general, but it is "almost right" for the functions 
in finite element subspaces, as is indicated by the second inequality in Lemma 
2.3. This observation is the main motivation for the result in this subsection, 
and the argument is similar to that used in the proof of Proposition 4.1. 

Lemma 4.4. For any u E Sh and T E .7h, 

I h (log ) h1/21u/H () if d = 2, 

h h( 'uH()if d = 3, whr I) SUIHh(T) i d = io 
wh ere Ih: Sh -4Sh is the interpolation operator. 
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Proof. We first consider the case that d = 2. Let T be the standard reference 
element; then 

II (I -Ih)UIIL2, Ch|I Ih)u|L() 

It follows from the discrete Sobolev inequality in Lemma 2.3 for d 2 that 

|(I- Ih)uIIL2(f) ? 2IIUIILh(f) (log h) 1/2 

Replacing ui by ut + c for any constant c, we have 

1 h\ 1/2 
II(I.1 II)|L 2 () ",<-.log h ) inf 11|u + CIIH,(fl \I ~~CER' 

h ~g. 1/2 hU (lg 1/2 
C h10# I'IH'(t) ' h10 IUIH'( r) 

The desired result for d = 2 then follows. The proof for d = 3 only differs 
in the type of Sobolev inequality (in (2.1)) used, and the details obviously need 
not be repeated here. This completes the proof. 0 

As a direct consequence of Lemma 4.4, we have 

Theorem 4.5. For any U E Sh, 

II (l-Qh )uIIL2 (fh (l )'Iuh lo h 1/2 if d = 2, 
lh( 'uh () if d=3 

and 

IQ~IH~) ~;ilig 

h 

I () 
if d = 

2, 
{ IUIHi(n) if d = 3. 

4.2.2. Estimates for general H1 functions. In this subsection, we shall derive 
some estimates for functions in H 

The following lemma shows that nearly optimal estimates can be obtained in 
general if the full weighted H1 norms are used. 

Lemma 4.6. For all u E Ho (Q), 

(4.8) I( - Qho)UIIL2(a) C h logh 12 
IIUIIHl(0) 

Proof. The proof will be carried out separately for different dimensions, even 
though the ideas in both cases are quite similar. 

Case 1: d = 2. Let wi be as in the proof of Lemma 4.2 and define w E Sh 
by 

[ Wi at the nodes inside Di 
w= Peu, at the nodes inside e c Ofl, 

0 O, at nodes elsewhere, 
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where e c Q, is any edge of QJ and Pe: L 2(e) 4 Sh(e) is the orthogonal 
L2 (e) projection. 

By (2.2), 
2 

2 h2 : (Wi_W)2(X) h2 : 1(Wi_W)2(X) 

XEOfQi eCO(Q xEe 

' h2 E ((Wi - PeU)2(X) + E w2(X)). 
eCO!Qi xEe xEOe 

We need to bound the two terms appearing in the last expression above. The 
first term is easy: 

> hIwi -PeUII|2(e) 2 hllu - Will22(an) 

ju - WiIIL2(a) + h2u 2 
- WiIIH1 () 

h h2 11U12 

where we have used Lemma 2.1 and (4.5). 
The second term can be bounded by the second discrete Sobolev inequality 

in Lemma 2.3: 
h 2 

w: W(x) -- -h 21log h ||I||IW 
2 

h 21 loghl iUII2In) 
eCOfQ xEEe 

Consequently, 
||W - WiiL2(L ) C hl loghI IIUIIH(Qi). 

Applying the above estimate, with the triangle inequality and (4.5), we get 

(4.9) jju WIIL2(a) < lju - WIL2(( ) + IIvi- ViL2(, ) < hl loghl IuII21( ). 
The desired result for d = 2 then follows. 
Case 2: d = 3. Again, let coi be as in the proof of Lemma 4.2 and define 
W E Sh by 

Wi, at the nodes inside Q 
W = PFU at the nodes inside F c aQ& , 

0 0, at nodes elsewhere, 
where F c 9LI is any face of Q and PF:L2(F) 4 Sh(F) is the orthogonal 
L 2(F) projection. Then 

Wi 12 WI2( h 3 1: (Wi _ W)2(X) c<- h3 (wi _ W)2 (X) 

XEOfQi FCO(Qi xEF 

h h3 2 
(E(wi-PFu)(X) + > w2 (x)) 

FCai2i EF xEOF 

(hIIwi - PFuIIl2(F) + h 2lWiILj(2F)). 
FCali 
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Again, we need to bound two terms appearing in the last expression above. For 
the first term, we have 

Z hIIwi L-PF U2F1(F)C hI1u -WiIIL2(Q f) 
FCOQ, 

C IIU - WIIL2(a) + h 2IIU WiiIH (a) 

< 2 liU12 

where we have used Lemma 2.1 and (4.5). 
The second term can be bounded by the discrete Sobolev inequality in Lemma 

2.4: 

E |Wi||L (OF) < h I log-h |tI(Q H h I loghl u|H'(QX 
FCaQi 

Consequently, 
llw - WiiiL2( i) hl logh hiIIUIIHf(X) 

As in (4.9), the estimate for d = 3 follows. This completes the proof. O 

As a direct consequence of the above lemma, we have 

Theorem 4.7. Iffor all i, the (d - 1)-dimensional Lebesgue measure of (O9 n 
aO) is positive, then for all u E Ho (Q) 

(4.10) 1(i - Q )uIIL2(Q) . h logh 1/2UIH1(Q) 

and 

(4.11) IQhuIHi(n) < IloghI1/ IUIH(Q). 

Proof. By hypothesis, we have IIUIIHI(Q) ' IuII(a) by the Poincare inequality. 
The estimate (4.10) then follows from (4.8). The estimate (4.1 1) can be proved 
similarly as (3.1 1) by using (4.10). 0 

Remark 4.1. The assumption concerning the measure of measd-l (ani n OQ) 
in Theorem 4.7 cannot be removed, in general, and the deterioration h-1/2 
in the estimate of Theorem 4.5 is also best possible. All these issues will be 
discussed in a separate paper. 
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